关于级数\(\sum \limits_{n = 1}^\infty \dfrac{1}{n^2}\)的讨论
March 21, 2024 Abstract 写这篇讨论的起因是矿爷提了个课后问题:“能否用幂级数展开的方法求出\(\sum \limits_{n = 1}^\infty \dfrac{1}{n^2}\)的值?谁能算出来下次上课前跟我说可以加分。” 自己试了试,做不出来,想到上学期 特殊函数:从组合数学到微积分 这门课有很多有趣的内容与之相关,故成此文,顺带复习。后来矿爷好像把加分的事忘了...
本文从四个角度讨论了级数\(\sum \limits_{n = 1}^\infty \dfrac{1}{n^2}\)的计算方法,并将其与一些其它数学概念联系在了一起。
1 \(~~\)傅里叶展开
矿爷微积分II上课内容的回顾,故放在第一个。
图1:函数 \(f(x) = |x|\) 及其偶延拓 考虑函数\(f(x) = |x|, ~x \in [-1,1]\). 偶延拓后用余弦级数进行展开,有
\[\begin{equation} \tag{1.1} \label{eq1.1} f(x) = \dfrac{a_0}{2} + \sum \limits_{n = 1}^\infty a_n \cos n\pi x \end{equation}\]
其中
\[\begin{equation*} a_0 = \int_{-1}^1 |x| \mathrm{d}x = 1, \quad a_n = \int_{-1}^1 |x|\cos n\pi x \mathrm{d}x = \dfrac{2(\cos n\pi -1)}{n^2\pi^2}. \end{equation*}\]
故
\[\begin{equation} \tag{1.2} \label{eq1.2} f(x) = \dfrac{1}{2} - \dfrac{4}{\pi^2} \sum \limits_{n = 1}^\infty \dfrac{1}{(2n-1)^2}\cos (2n-1)\pi x, ~x \in [-1,1]. \end{equation}\]
令 \(x = 0\) , 得
\[\begin{equation*} \sum \limits_{n = 1}^\infty \dfrac{1}{(2n-1)^2} = \dfrac{\pi^2}{8}. \end{equation*}\]
即所有奇数的平方倒数之和等于\(\dfrac{\pi^2}{8}\). 假定级数\(\sum \limits_{n = 1}^\infty \dfrac{1}{n^2}\)收敛,容易得到
\[\begin{equation*} \sum \limits_{n = 1}^\infty \dfrac{1}{n^2} = \sum \limits_{n = 1}^\infty \dfrac{1}{(2n-1)^2} + \sum \limits_{n = 1}^\infty \dfrac{1}{(2n)^2}. \end{equation*}\]
进而求得
\[\begin{equation} \tag{1.3} \label{eq1.3} \sum \limits_{n = 1}^\infty \dfrac{1}{n^2} = \dfrac{\pi^2}{6}. \end{equation}\]
2 \(~~\)幂级数的尝试
受到苏老师课后问题的激励,我尝试用幂级数的方法来计算级数\(\sum \limits_{n = 1}^\infty \dfrac{1}{n^2}\),但没能完整地完成。这里给出我每一步的思考过程。
考虑级数\(\sum \limits_{n = 1}^\infty \dfrac{x^n}{n^2}\). 由比值判别法,级数的收敛半径为 \(1\),故级数在 \((-1,1)\) 上绝对收敛。经检验,级数在两端点也收敛,故该级数的收敛域为 \([-1,1]\).
对级数逐项求导,得
\[\begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}x} \sum \limits_{n = 1}^\infty \dfrac{x^n}{n^2} = \sum \limits_{n = 1}^\infty \dfrac{nx^{n-1}}{n^2} = \sum \limits_{n = 1}^\infty \dfrac{x^{n-1}}{n} = \dfrac{1}{x}\sum \limits_{n = 1}^\infty \dfrac{x^n}{n} = -\dfrac{\ln(1-x)}{x}. \end{equation*}\]
故
\[\begin{equation} \tag{2.1} \label{eq2.1} \sum \limits_{n = 1}^\infty \dfrac{x^n}{n^2} = \int_0^x -\dfrac{\ln(1-x)}{x} \mathrm{d}x. \end{equation}\]
注意到 \(x = 0\) 和 \(x = 1\) 分别是被积函数的可去间断点和瑕点.用计算机求得
\[\begin{equation*} \int_0^1 -\dfrac{\ln(1-x)}{x} \mathrm{d}x \approx 1.644934 \doteq \dfrac{\pi^2}{6}. \end{equation*}\]
试了一些换元法,但都没能求得被积函数的原函数。查阅资料后发现,被积函数的原函数是一个特殊函数,称为二重对数函数(The Dilogarithm Function),记作 \(\mathrm{Li}_2(z)\). 更一般的,\(\mathrm{Li}_n(z)\) 称作多重对数函数(The Polylogarithm Function),其定义如下.
\[\begin{equation} \tag{2.2} \label{eq2.2} \mathrm{Li}_n(z) = \sum \limits_{k = 1}^\infty \dfrac{z^k}{k^n} \end{equation}\]
显然,\(z = 1\) 时,有
\[\begin{equation} \mathrm{Li}_n(1) = \zeta(n) = \sum \limits_{k = 1}^\infty \dfrac{1}{k^n}. \end{equation}\]
即多重对数函数在 \(z = 1\) 处的值就是黎曼 \(\zeta\) 函数的值。更特殊的,\(n = 2\) 时,有 \begin{equation} \tag{2.3} \label{eq2.3} \mathrm{Li}_2(1) = \zeta(2) = \dfrac{\pi^2}{6}. \end{equation}
对多重对数函数做进一步的了解后,我惊喜地发现它在数论和物理学中有很多应用。比如在 Bose-Einstein 分布和 Fermi-Dirac 分布中,多重对数函数都有出现,而两者分别是在研究整数倍自旋的玻色子和半整数倍自旋的费米子时得到的。可见多重对数函数是个很有意思的特殊函数。
3 \(~~\sin x\) 的另一种级数展开
\(\sin x\) 常见的一种级数展开是 Maclaurin 展开:
\[\begin{equation} \tag{3.1} \label{eq3.1} \sin x = x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \cdots = \sum \limits_{n = 0}^\infty (-1)^n \dfrac{x^{2n+1}}{(2n+1)!}. \end{equation}\]
除了 Maclaurin 展开,\(\sin x\) 还可以这样展开:
\[\begin{equation} \tag{3.2} \label{eq3.2} \sin x = x \cdot \prod \limits_{n = 1}^\infty \left(1 - \dfrac{x^2}{n^2\pi^2}\right). \end{equation}\]
图2:\(f(x) = \sin x\) 的另一种级数展开 现在考虑 \(\dfrac{\sin x}{x}\). 式 \eqref{eq3.1} \eqref{eq3.2} 两边同时除以 \(x\),得
\[\begin{equation*} \sum \limits_{n = 0}^\infty (-1)^n \dfrac{x^{2n}}{(2n+1)!} = \prod \limits_{n = 1}^\infty \left(1 - \dfrac{x^2}{n^2\pi^2}\right). \end{equation*}\]
关注含有 \(x^2\) 的项,对应两边系数得
\[\begin{equation*} -\dfrac{1}{6} = -\dfrac{1}{\pi^2} - \dfrac{1}{(2\pi)^2} - \dots = -\dfrac{1}{\pi^2} \sum \limits_{n = 1}^\infty \dfrac{1}{n^2}. \end{equation*}\]
求得
\[\begin{equation*} \sum \limits_{n = 1}^\infty \dfrac{1}{n^2} = \dfrac{\pi^2}{6}. \end{equation*}\]
4 \(~~\)Zeta 函数与伯努利数
限于篇幅,较简略地写了。
定理4.1.\(~~\)伯努利数的生成函数为
\[\begin{equation} \tag{4.1} \label{eq4.1} \dfrac{x}{e^x - 1} = \sum \limits_{n = 0}^\infty B_n \dfrac{x^n}{n!}. \end{equation}\]
此处略去证明。式 \eqref{eq4.1} 右边求和下标从 \(n = 2\) 开始,整理得
\[\begin{equation*} 1 + \sum \limits_{n = 2}^\infty B_n \dfrac{x^n}{n!} = \dfrac{x}{2} \cdot \dfrac{e^{x/2} + e^{-x/2}}{e^{x/2} - e^{-x/2}}. \end{equation*}\]
注意到式子右边是偶函数,故可推知式子左边没有奇次幂项,即 \(B_{2n+1} = 0, ~\forall n \in \mathbb{N_{+}}\). 式子可进一步化为
\[\begin{equation} \tag{4.2} \label{eq4.2} 1 + \sum \limits_{n = 1}^\infty B_{2n} \dfrac{x^{2n}}{(2n)!} = \dfrac{x}{2} \coth(\dfrac{x}{2}), ~|x| < 2\pi. \end{equation}\]
通过代换 \(2 \mathrm{i} x \mapsto x\) 及一系列运算得到(收敛半径求解略)
\[\begin{equation} \tag{4.3} \label{eq4.3} x\cot x = \sum \limits_{k = 0}^\infty (-1)^k \dfrac{B_{2k} 2^{2k}}{(2k)!}x^{2k}, ~|x| < \pi. \end{equation}\]
另一方面,将式 \eqref{eq3.2} 两边取对数,得
\[\begin{equation*} \ln \sin x = \ln x + \sum \limits_{n = 1}^\infty \ln \left(1 - \dfrac{x^2}{n^2\pi^2}\right). \end{equation*}\]
对两边求导,得
\[\begin{equation*} \cot x = \dfrac{1}{x} + \sum \limits_{n = 1}^\infty \dfrac{2x}{(x-n\pi)(x+n\pi)} = \dfrac{1}{x} + \sum \limits_{n = 1}^\infty \dfrac{1}{n\pi}(\dfrac{1}{1+\dfrac{x}{n\pi}}-\dfrac{1}{1-\dfrac{x}{n\pi}}). \end{equation*}\]
结合几何级数,有
\[\begin{equation*} \dfrac{1}{1+\dfrac{x}{n\pi}}-\dfrac{1}{1-\dfrac{x}{n\pi}} = -2\sum \limits_{k = 1}^\infty (\dfrac{x}{n\pi})^{2k-1}, ~\left\lvert \dfrac{x}{n\pi} \right\rvert < 1. \end{equation*}\]
上式进一步化为
\[\begin{equation*} \cot x = \dfrac{1}{x} - 2\sum \limits_{n = 1}^\infty \dfrac{1}{n\pi} \sum \limits_{k = 1}^\infty (\dfrac{x}{n\pi})^{2k-1} = \dfrac{1}{x}(1-2\sum \limits_{n = 1}^\infty \sum \limits_{k = 1}^\infty \dfrac{x^{2k}}{(n\pi)^{2k}}). \end{equation*}\]
同乘以 \(x\),得
\[\begin{align*} x\cot x &= 1-2\sum \limits_{n = 1}^\infty \sum \limits_{k = 1}^\infty \dfrac{x^{2k}}{(n\pi)^{2k}} \overset{\text{交换次序}}{=} 1-2\sum \limits_{k = 1}^\infty \sum \limits_{n = 1}^\infty \dfrac{x^{2k}}{(n\pi)^{2k}} \\ &= 1-2\sum \limits_{k = 1}^\infty \dfrac{\zeta(2k)}{\pi^{2k}}x^{2k}, ~|x| < \pi. \end{align*}\]
即得
\[\begin{equation} \tag{4.4} \label{eq4.4} x\cot x = 1-2\sum \limits_{k = 1}^\infty \dfrac{\zeta(2k)}{\pi^{2k}}x^{2k}, ~|x| < \pi. \end{equation}\]
比较式 \eqref{eq4.3} 和式 \eqref{eq4.4} 两边 \(x^{2k}\) 的系数,得到
\[\begin{equation*} (-1)^k \dfrac{B_{2k} 2^{2k}}{(2k)!} = -2\dfrac{\zeta(2k)}{\pi^{2k}}. \end{equation*}\]
于是我们得到了 \(\zeta\) 函数和伯努利数的联系:
\[\begin{equation} \tag{4.5} \label{eq4.5} \zeta(2k) = (-1)^{k+1} \dfrac{(2\pi)^{2k} B_{2k}}{2(2k)!}, ~k \in \mathbb{N_{+}}. \end{equation}\]
代入 \(k = 1\),终于求得了
\[\begin{equation*} \zeta(2) = \sum \limits_{n = 1}^\infty \dfrac{1}{n^2} = \dfrac{\pi^2}{6}. \end{equation*}\]
总结
除了第二种方法,其它三个都只是我对已学知识的回顾和整理。第二种方法是自己尝试的,虽然没能完整完成,涉及到的多重对数函数也超出了能力范围,但我还是学到了很多。和这个级数牵扯到的 \(\zeta\) 和 \(\mathrm{Li}_n\) 等特殊函数很有意思,也有很多应用,今后还会学习。最后,感谢苏老师的课后问题,让我有了这次尝试。